Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add filters








Year range
1.
Biol. Res ; 55: 32-32, 2022. ilus, graf
Article in English | LILACS | ID: biblio-1403570

ABSTRACT

BACKGROUND: Designed mimetic molecules are attractive tools in biopharmaceuticals and synthetic biology. They require mass and functional production for the assessment of upcoming challenges in the near future. The DARPin family is considered a mimetic pharmaceutical peptide group with high affinity binding to specific targets. DARPin G3 is designed to bind to the HER2 (human epidermal growth factor receptor 2) tyrosine kinase receptor. Overexpression of HER2 is common in some cancers, including breast cancer, and can be used as a prognostic and predictive tool for cancer. The chloroplasts are cost-effective alternatives, equal to, and sometimes better than, bacterial, yeast, or mammalian expression systems. This research examined the possibility of the production of the first antibody mimetic, DARPin G3, in tobacco chloroplasts for HER2 imaging in oncology. RESULTS: The chloroplast specific DARPin G3 expression cassette was constructed and transformed into N. tabacum chloroplasts. PCR and Southern blot analysis confirmed integration of transgenes as well as chloroplastic and cellular homoplasmy. The Western blot analysis and ELISA confirmed the production of DARPin G3 at the commercial scale and high dose with the rate of 20.2% in leaf TSP and 33.7% in chloroplast TSP. The functional analysis by ELISA confirmed the binding of IMAC purified chloroplast-made DARPin G3 to the extracellular domain of the HER2 receptor with highly effective picomolar affinities. The carcinoma cellular studies by flow cytometry and immunofluorescence microscopy confirmed the correct functioning by the specific binding of the chloroplast-made DARPin G3 to the HER2 receptor on the surface of HER2-positive cancer cell lines. CONCLUSION: The efficient functional bioactive production of DARPin G3 in chloroplasts led us to introduce plant chloroplasts as the site of efficient production of the first antibody mimetic molecules. This report, as the first case of the cost-effective production of mimetic molecules, enables researchers in pharmaceuticals, synthetic biology, and bio-molecular engineering to develop tool boxes by producing new molecular substitutes for diverse purposes.


Subject(s)
Humans , Animals , Biological Products , Designed Ankyrin Repeat Proteins , Pharmaceutical Preparations/metabolism , Chloroplasts/metabolism , Chloroplasts/chemistry , Receptor, ErbB-2 , Cell Line, Tumor , Mammals/metabolism
2.
Electron. j. biotechnol ; 45: 1-9, May 15, 2020. ilus
Article in English | LILACS | ID: biblio-1177370

ABSTRACT

BACKGROUND: Maize is one of the most important crops worldwide and has been a target of nuclear-based transformation biotechnology to improve it and satisfy the food demand of the ever-growing global population. However, the maize plastid transformation has not been accomplished due to the recalcitrant condition of the crop. RESULTS: In this study, we constructed two different vectors with homologous recombination sequences from maize (Zea mays var. LPC13) and grass (Bouteloua gracilis var. ex Steud) (pZmcpGFP and pBgcpGFP, respectively). Both vectors were designed to integrate into rrn23S/rrn16S from an inverted repeat region in the chloroplast genome. Moreover, the vector had the mgfp5 gene driven by Prrn, a leader sequence of the atpB gene and a terminator sequence from the rbcL gene. Also, constructs have an hph gene as a selection marker gene driven by Prrn, a leader sequence from rbcL gene and a terminator sequence from the rbcL gene. Explants of maize, tobacco and Escherichia coli cells were transformed with both vectors to evaluate the transitory expression­an exhibition of green and red fluorescent light under epifluorescence microscopy. These results showed that both vectors were expressed; the reporter gene in all three organisms confirmed the capacity of the vectors to express genes in the cell compartments. CONCLUSIONS: This paper is the first report of transient expression of GFP in maize embryos and offers new information for genetically improving recalcitrant crops; it also opens new possibilities for the improvement in maize chloroplast transformation with these vectors.


Subject(s)
Tobacco/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Zea mays/genetics , Green Fluorescent Proteins/metabolism , Transformation, Genetic , Biotechnology , Polymerase Chain Reaction , Plants, Genetically Modified , Plastids/genetics , Green Fluorescent Proteins/genetics , Escherichia coli , Genome, Chloroplast
3.
Braz. j. biol ; 77(3): 535-541, July-Sept. 2017. graf
Article in English | LILACS | ID: biblio-888779

ABSTRACT

Abstract Golden trumpet, Tabebuia chrysotricha, is a native tree from the Brazilian Atlantic rain forest, with a broad latitudinal distribution. In this study, we investigated the potential effects of short-term changes in micro-weather conditions on structural features, and total protein and carbohydrate content of golden trumpet leaves, using structural and histochemical approaches. Leaves were harvested in four different micro-weather conditions: 1. Afternoon, after a hot, sunny day; 2. at dawn, after a previously hot, sunny day; 3. at noon, of a hot, sunny day; and 4. at noon, of a cold, cloudy day. Leaflets exposed to low light irradiance showed flattened chloroplasts, uniformly distributed within the cells, throughout the palisade parenchyma. Conversely, leaflets exposed to high light irradiance presented flattened and rounded chloroplasts, in the upper and lower palisade parenchyma cells, respectively. The strongest protein staining was found for leaves harvested at the coldest period, whereas the weakest protein staining was found for leaves harvested after a hot, sunny day. The largest and most numerous starch grains were found for leaves harvested in the afternoon, after a hot, sunny day. Conversely, the smallest and less numerous starch grains were found for leaves harvested at dawn. Analysis of the data reported herein suggests that the leaflet responses to transient changes in micro-weather conditions are likely to contribute to the golden trumpet successful establishment in the broad latitudinal distribution in which the species is found.


Resumo Ipê amarelo é uma árvore nativa da floresta Atlântica brasileira, encontrada em uma ampla distribuição latitudinal. Neste estudo, nós investigamos os efeitos potenciais de alterações de curto prazo nas condições micro-climáticas sobre características estruturais, proteína e carboidratos histoquimicamente marcados, de folhas de ipê amarelo, usando estratégias de análise estrutural e histoquímicas. As folhas foram marcadas em quatro condições microclimáticas distintas: 1. Tarde, após um dia quente e ensolarado; 2. Amanhecer, após um dia quente e ensolarado; 3. Ao meio-dia, de um dia quente e ensolarado; e 4. Ao meio-dia, de um dia frio e nublado. Folíolos expostos à baixa irradiância luminosa apresentaram cloroplastos achatados, uniformemente distribuídos no interior das células, por todo o parênquima paliçádico, enquanto que folíolos expostos à alta irradiância apresentaram cloroplastos achatados e arredondados, nas células superiores e inferiores do parênquima paliçádico, respectivamente. A marcação mais intensa para proteína foi observada para folhas coletadas no momento mais frio de coleta, enquanto que a marcação mais fraca foi observada para folhas coletadas após um dia quente e ensolarado. Os grãos de amido maiores e mais numerosos foram observados em folhas coletadas durante a tarde de dia quente e ensolarado, enquanto que os menores e menos numerosos grãos de amido foram observados em folhas coletadas ao amanhecer.


Subject(s)
Plant Proteins/metabolism , Weather , Plant Leaves/metabolism , Tabebuia/anatomy & histology , Tabebuia/metabolism , Carbohydrate Metabolism , Brazil , Chloroplasts/metabolism , Rainforest , Microclimate
4.
Biol. Res ; 48: 1-11, 2015. ilus, tab
Article in English | LILACS | ID: biblio-950778

ABSTRACT

BACKGROUND: Insects have developed resistance against Bt-transgenic plants. A multi-barrier defense system to weaken their resistance development is now necessary. One such approach is to use fusion protein genes to increase resistance in plants by introducing more Bt genes in combination. The locating the target protein at the point of insect attack will be more effective. It will not mean that the non-green parts of the plants are free of toxic proteins, but it will inflict more damage on the insects because they are at maximum activity in the green parts of plants. RESULTS: Successful cloning was achieved by the amplification of Cry2A, Cry1Ac, and a transit peptide. The appropriate polymerase chain reaction amplification and digested products confirmed that Cry1Ac and Cry2A were successfully cloned in the correct orientation. The appearance of a blue color in sections of infiltrated leaves after 72 hours confirmed the successful expression of the construct in the plant expression system. The overall transformation efficiency was calculated to be 0.7%. The amplification of Cry1Ac-Cry2A and Tp2 showed the successful integration of target genes into the genome of cotton plants. A maximum of 0.673 µg/g tissue of Cry1Ac and 0.568 µg/g tissue of Cry2A was observed in transgenic plants. We obtained 100% mortality in the target insect after 72 hours of feeding the 2nd instar larvae with transgenic plants. The appearance of a yellow color in transgenic cross sections, while absent in the control, through phase contrast microscopy indicated chloroplast localization of the target protein. CONCLUSION: Locating the target protein at the point of insect attack increases insect mortality when compared with that of other transgenic plants. The results of this study will also be of great value from a biosafety point of view.


Subject(s)
Animals , Bacterial Proteins/genetics , Recombinant Fusion Proteins , Chloroplasts/genetics , Insect Control/methods , Gossypium/genetics , Endotoxins/genetics , Hemolysin Proteins/genetics , Lepidoptera , Bacillus thuringiensis , Bacterial Proteins/analysis , Insecticide Resistance/genetics , Immunohistochemistry , Gene Expression/genetics , Chloroplasts/metabolism , Polymerase Chain Reaction , Microscopy, Phase-Contrast , Plants, Genetically Modified , Cloning, Molecular , DNA Primers , Plant Leaves/genetics , Transgenes/physiology , Endotoxins/analysis , Gene Fusion , Hemolysin Proteins/analysis , Insecticides , Larva
5.
Indian J Exp Biol ; 2014 Sept; 52(9): 898-904
Article in English | IMSEAR | ID: sea-153778

ABSTRACT

Stevia rebaudiana (Bert.) Bertoni is an important medicinal plant used as noncaloric commercial sweetener. Plants regenerated with higher levels of copper sulphate in the medium exhibited enhanced activity of peroxidase and polyphenoloxidase (PPO) enzymes. Transmission electron microscopy (TEM) revealed increase in size and number of electron dense inclusions in the chloroplasts of plants regenerated at optimised level of copper sulphate (0.5µM) in the medium. There was decrease in chlorogenic acid (CGA) content. Chl-a-fluorescence transient pattern (OJIP) showed that the photosynthesis process was more efficient at 0.5µM CuSO4 in the medium. 


Subject(s)
Chloroplasts/drug effects , Chloroplasts/enzymology , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Copper Sulfate/pharmacology , Photosynthesis/drug effects , Stevia/drug effects , Stevia/enzymology , Stevia/physiology
6.
Electron. j. biotechnol ; 16(6): 13-13, Nov. 2013. ilus, tab
Article in English | LILACS | ID: lil-696554

ABSTRACT

Background: Transgenic plants inhabiting single Bt gene are prone to develop insect resistance and this resistance has been reported in case of some important yield-devastating insect larvae of commercial crops, such as cotton and rice. Therefore, it has become essential to adapt new strategies to overcome the problem of insect resistance and these new strategies should be sophisticated enough to target such resistant larvae in broad spectrum. Among these, plants may be transformed with Bt gene tagged with some fusion-protein gene that possesses lectin-binding capability to boost the binding sites for crystal protein gene within insect mid-gut in order to overcome any chances of insect tolerance against Bt toxin. Enhanced chloroplast-targeted Bt gene expression can also help in the reduction of insect resistance. Results: In the present investigation, a combined effect of both these strategies was successfully used in cotton (G. hirsutum). For this purpose, plant expression vector pKian-1 was created, after a series of cloning steps, carrying Cry1Ac gene ligated with chloroplast transit peptide towards N-terminal and Ricin B-Chain towards C-terminal, generating TP-Cry1Ac-RB construct. Conclusions: Efficacy of pKian-1 plasmid vector was confirmed by in-planta Agrobacterium-mediated leaf GUS assay in tobacco. Cotton (G. hirsutum) local variety MNH-786 was transformed with pKian-1 and the stable integration of TP-Cry1Ac-RB construct in putative transgenic plants was confirmed by PCR; while fusion-protein expression in cytosol as well as chloroplast was substantiated by Western blot analysis. Whereas, confocal microscopy of leaf-sections of transgenic plants exposed that hybrid-Bt protein was expressing inside chloroplasts.


Subject(s)
Chloroplasts/genetics , Chloroplasts/metabolism , Plants, Genetically Modified , Chloroplast Proteins/isolation & purification , Ricin/analysis , Protein Sorting Signals , Blotting, Western , Cloning, Molecular , Microscopy, Confocal , Agrobacterium , Chloroplast Proteins/genetics , Insecta
7.
Indian J Biochem Biophys ; 2009 Oct; 46(5): 405-408
Article in English | IMSEAR | ID: sea-135225

ABSTRACT

Mercury is known to interact with different parts of living systems causing serious biochemical and physiological disorder. In order to know the effect of mercury (Hg2+) ion on chloroplasts, the cell free organelle are incubated in an isotonic buffer medium in presence of mercury ion. The metal ion is found to induce membrane lipid peroxidation, loss of photosynthetic pigments and degradation of proteins. Such degradation brings about a drastic modification of lipid-protein organization of chloroplasts as reflected from a blue shift of absorption peaks and lowering of chlorophyll-a fluorescence intensity. The detrimental effect of Hg2+ ion has been explained in terms of direct binding with lipid-protein complex of photosynthetic membrane. Such a binding of metal ion exposes the lipid-protein complex for an easier entry and attack of reactive oxygen species (ROS) generated during incubation of chloroplasts in light and dark, thereby resulting in higher disorganization, which is evident from cation- induced changes in absorption and emission characteristics of the organelle.


Subject(s)
Absorption , Chloroplasts/drug effects , Chloroplasts/metabolism , Darkness , Lipid Metabolism/drug effects , Lipid Peroxidation/drug effects , Malondialdehyde/metabolism , Mercury/pharmacology , Photosynthesis/drug effects , Pigments, Biological/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Stability/drug effects , Thylakoids/drug effects , Thylakoids/metabolism , Triticum/cytology , Triticum/drug effects , Triticum/metabolism
8.
Indian J Biochem Biophys ; 2006 Aug; 43(4): 244-6
Article in English | IMSEAR | ID: sea-26910

ABSTRACT

Differential display (DD) experiments were performed on drought-tolerant rice (Oryza sativa L.) genotype N22 to identify both upregulated and downregulated partial cDNAs with respect to moisture stress. DNA polymorphism was detected between drought-stressed and control leaf tissues on the DD gels. A partial cDNA showing differential expression, with respect to moisture stress was isolated from the gel. Northern blotting analysis was performed using this cDNA as a probe and it was observed that mRNA corresponding to this transcript was accumulated to high level in rice leaves under water deficit stress. At the DNA sequence level, the partial cDNA showed homology with psb A gene encoding for Dl protein.


Subject(s)
Base Sequence , Biochemistry/methods , Blotting, Northern , Chloroplasts/metabolism , DNA, Complementary/metabolism , DNA, Plant , Expressed Sequence Tags , Gene Expression Profiling , Genes, Plant , Molecular Sequence Data , Oryza/enzymology , Photosystem II Protein Complex/chemistry , Polymorphism, Genetic
9.
Indian J Biochem Biophys ; 1996 Dec; 33(6): 471-7
Article in English | IMSEAR | ID: sea-27355

ABSTRACT

Changes in carotenoid composition, CO2 assimilation and chlorophyll fluorescence due to photoinhibition at 5 degrees C and 20 degrees C were studied in 12 day and 30 day old sorghum leaves. The old leaves had a higher violaxanthin (V) content and less beta-carotene. Photoinhibition at both temperatures caused significant increases in zeaxanthin (Z) and decreases in violaxanthin. However, in young leaves the increase in zeaxanthin was greater than the decrease in violaxanthin. In young leaves the V + A + Z pool size (A = antheraxanthin) almost doubled under photoinhibitory conditions (compared to controls) while in old leaves the V + A + Z pool remained approximately constant. After photoinhibition treatment changes in the levels of the xanthophylls were restored during a recovery period both in young and old leaves. When rephotoinhibited after a 48 hr recovery period, the young plants showed better protection against photoinhibition. We suggest that in young leaves zeaxanthin is newly synthesized under photoinhibitory conditions besides being de-epoxidized from violaxanthin and that the synthesis of V + A + Z pool is higher at 20 degrees C than at 5 degrees C in both young and old leaves.


Subject(s)
Carbon Dioxide/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , Fluorescence , Light , Lutein/metabolism , Pigments, Biological/metabolism , Plant Leaves/metabolism , Temperature , Time Factors , Xanthophylls , beta Carotene/analogs & derivatives
10.
Braz. j. med. biol. res ; 29(1): 111-7, Jan. 1996. ilus
Article in English | LILACS | ID: lil-161661

ABSTRACT

Gonyaulax polyedra is a unicellular marine photosynthetic dinoflagellate known to display numerous circadian rhythms, including bioluminescence, motility, cell division and several chloroplast-related rhythms. Due to this, Gonyaulax has become a widely used model organism for studying the cellular biological clock. In this work we describe another rhythm for Gonyaulax cells also associated with the cell's chloroplasts, a rhythm in localization of the enzyme nitrate reductase (NR). A polyclonal antibody was raised against NR purified from G. polyedra cells and used as a probe in immunogold labelling experiments on cell thin sections, comparing day- and night-phase cells. The enzyme localizes to chloroplasts in day-phase cells, while the enzyme is active, and is largely absent in night-phase cells. Counts of gold particle distribution in day- versus night-phase cells show an approximate three-fold increase in enzyme labelling in day-phase plastids. These results closely approximate the four-fold differences shown for NR activity between day and night Gonyaulax cells by biochemical studies. We conclude from the diurnal difference in labelling that NR is localized in Gonyaulax chloroplasts during the day phase and is absent (broken down) in night-phase cells. Thus NR in Gonyaulax is compartmentalized in the chloroplasts and is therefore subject to similar circadian control mechanisms exhibited for other plastid rhythms.


Subject(s)
Chloroplasts/enzymology , Circadian Rhythm , Dinoflagellida/physiology , Nitrate Reductases/metabolism , Biological Clocks , Chloroplasts/metabolism , Immunohistochemistry
11.
Indian J Biochem Biophys ; 1990 Dec; 27(6): 443-5
Article in English | IMSEAR | ID: sea-27193

ABSTRACT

An anti-idiotypic antibody approach was used to identify chloroplast and mitochondrial protein component(s) which interact with the corresponding signal sequence. The proteins thus identified can be operationally defined as receptor(s) for import of proteins into chloroplasts and mitochondria. The import receptor(s) was found in "contact sites" between the outer and inner membrane of chloroplast envelope or of mitochondria.


Subject(s)
Antibodies, Anti-Idiotypic , Biological Transport , Chloroplasts/metabolism , Fabaceae , Fungal Proteins/metabolism , Membrane Proteins/immunology , Mitochondria/metabolism , Plant Proteins/metabolism , Plants, Medicinal , Protein Sorting Signals/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cytoplasmic and Nuclear , Receptors, Peptide , Ribulose-Bisphosphate Carboxylase/immunology , Yeasts
12.
Indian J Biochem Biophys ; 1990 Jun; 27(3): 159-63
Article in English | IMSEAR | ID: sea-27789

ABSTRACT

Aging of cell-free chloroplasts at pH 7.0 and 9.0 causes a decline in the level of photosynthetic pigments, quenching of chlorophyll a fluorescence and enhancement in fluorescence polarization. These changes are correlated with photoinduced enhancement of thylakoid lipid peroxidation. The alkaline earth metal cations, namely magnesium and calcium, show opposite actions on lipid peroxidation and modulate thylakoid disorganisation differently. Magnesium ion may stabilise thylakoid membrane by retarding lipid peroxidation. It lowers aging-induced quenching of fluorescence intensity and enhancement of fluorescence polarization. Calcium ion, on the other hand, stimulates disorganisation of thylakoid membranes. It enhances membrane lipid peroxidation, quenching of chlorophyll a fluorescence intensity and fluorescence polarization.


Subject(s)
Calcium/physiology , Cell-Free System , Chloroplasts/metabolism , Light , Lipid Peroxidation/physiology , Magnesium/physiology , Membrane Lipids/metabolism , Triticum/metabolism
13.
Indian J Biochem Biophys ; 1990 Feb; 27(1): 9-12
Article in English | IMSEAR | ID: sea-27278

ABSTRACT

A model for evolution of oxygen evolving reaction center II of higher plant initiating from a chlorophyll--quinone complex is proposed. The reaction center gradually incorporates pheophytin, Fe and Mn to finally achieve oxidation of water to oxygen. The structural and functional pattern during evolution is proposed to descend from higher order of symmetry to lower one.


Subject(s)
Chlorophyll/metabolism , Chloroplasts/metabolism , Biological Evolution , Light-Harvesting Protein Complexes , Models, Molecular , Oxygen/metabolism , Photosynthetic Reaction Center Complex Proteins , Plant Proteins/metabolism
16.
SELECTION OF CITATIONS
SEARCH DETAIL